✒️
Computer Science Principles
  • Introduction
  • Overview
  • Course at a Glance
  • Course Exam Description
  • Create Performance Task
  • Reference Sheet
  • Resources
  • Big Idea 1
    • 1.1 Collaboration
    • 1.2 Program Function and Purpose
    • 1.3 Program Design and Development
    • 1.4 Identifying and Correcting Errors
  • Big Idea 2
    • 2.1 Binary Numbers
    • 2.2 Data Compression
    • 2.3 Extracting Information from Data
    • 2.4 Using Programs with Data
  • Big Idea 3
    • 3.1 Variables and Assignments
    • 3.2 Data Abstraction
    • 3.3 Mathematical Expressions
    • 3.4 Strings
    • 3.5 Boolean Expression
    • 3.6 Conditionals
    • 3.7 Nested Conditionals
    • 3.8 Iteration
    • 3.9 Developing Algorithms
    • 3.10 Lists
    • 3.11 Binary Search
    • 3.12 Calling Procedures
    • 3.13 Developing Procedures
    • 3.14 Libraries
    • 3.15 Random Values
    • 3.16 Simulations
    • 3.17 Algorithmic Efficiency
    • 3.18 Undecidable Problems
  • Big Idea 4
    • 4.1 The Internet
    • 4.2 Fault Tolerant
    • 4.3 Parallel and Distributed Computing
  • Big Idea 5
    • 5.1 Beneficial and Harmful Effects
    • 5.2 Digital Divide
    • 5.3 Computing Bias
    • 5.4 Crowdsourcing
    • 5.5 Legal and Ethical Concerns
    • 5.6 Safe Computing
  • Code
    • Week 10
    • Week 11
    • Week 12
    • Week 13
    • Week 14
    • Week 15
    • Week 16
    • Week 17
    • Week 18
    • Week 19
    • Week 20
    • Week 21
    • Week 22
Powered by GitBook
On this page
  • Enduring Understanding
  • Learning Objective
  • Essential Knowledge

Was this helpful?

Export as PDF
  1. Big Idea 3

3.11 Binary Search

Enduring Understanding

The way statements are sequenced and combined in a program determines the computed result. Programs incorporate iteration and selection constructs to represent repetition and make decisions to handle varied input values.

Learning Objective

For binary search algorithms:

a. Determine the number of iterations required to find a value in a data set.

b. Explain the requirements necessary to complete a binary search.

Essential Knowledge

The binary search algorithm starts at the middle of a sorted data set of numbers and eliminates half of the data; this process repeat until the desired value is found or all elements have been eliminated.

Exclusion Statement: Specific implementations of the binary search are outside the scope of the course and the AP Exam.

Data must be in sorted order to use the binary search algorithm.

Binary search is often more efficient than sequential/linear search when applied to sorted data.

Previous3.10 ListsNext3.12 Calling Procedures

Last updated 1 year ago

Was this helpful?