✒️
Computer Science Principles
  • Introduction
  • Overview
  • Course at a Glance
  • Course Exam Description
  • Create Performance Task
  • Reference Sheet
  • Resources
  • Big Idea 1
    • 1.1 Collaboration
    • 1.2 Program Function and Purpose
    • 1.3 Program Design and Development
    • 1.4 Identifying and Correcting Errors
  • Big Idea 2
    • 2.1 Binary Numbers
    • 2.2 Data Compression
    • 2.3 Extracting Information from Data
    • 2.4 Using Programs with Data
  • Big Idea 3
    • 3.1 Variables and Assignments
    • 3.2 Data Abstraction
    • 3.3 Mathematical Expressions
    • 3.4 Strings
    • 3.5 Boolean Expression
    • 3.6 Conditionals
    • 3.7 Nested Conditionals
    • 3.8 Iteration
    • 3.9 Developing Algorithms
    • 3.10 Lists
    • 3.11 Binary Search
    • 3.12 Calling Procedures
    • 3.13 Developing Procedures
    • 3.14 Libraries
    • 3.15 Random Values
    • 3.16 Simulations
    • 3.17 Algorithmic Efficiency
    • 3.18 Undecidable Problems
  • Big Idea 4
    • 4.1 The Internet
    • 4.2 Fault Tolerant
    • 4.3 Parallel and Distributed Computing
  • Big Idea 5
    • 5.1 Beneficial and Harmful Effects
    • 5.2 Digital Divide
    • 5.3 Computing Bias
    • 5.4 Crowdsourcing
    • 5.5 Legal and Ethical Concerns
    • 5.6 Safe Computing
  • Code
    • Week 10
    • Week 11
    • Week 12
    • Week 13
    • Week 14
    • Week 15
    • Week 16
    • Week 17
    • Week 18
    • Week 19
    • Week 20
    • Week 21
    • Week 22
Powered by GitBook
On this page
  • Enduring Understanding
  • Learning Objective
  • Essential Knowledge

Was this helpful?

Export as PDF
  1. Big Idea 4

4.2 Fault Tolerant

Enduring Understanding

Computer systems and networks facilitate the transfer of data.

Learning Objective

For fault-tolerant systems, like the Internet:

a. Describe the benefits of fault tolerance

b. Explain how a given system is fault-tolerant.

c. Identify vulnerabilities to failure in a system. 

Essential Knowledge

The Internet has been engineered to be faulttolerant, with abstractions for routing and transmitting data.

Redundancy is the inclusion of extra components that can be used to mitigate failure of a system if other components fail.

One way to accomplish network redundancy is by having more than one path between any two connected devices.

If a particular device or connection on the Internet fails, subsequent data will be sent via a different route, if possible.

When a system can support failures and still continue to function, it is called fault-tolerant. This is important because elements of complex systems fail at unexpected times, often in groups, and fault tolerance allows users to continue to use the network.

Redundancy within a system often requires additional resources but can provide the benefit of fault tolerance.

The redundancy of routing options between two points increases the reliability of the Internet and helps it scale to more devices and more people.

Previous4.1 The InternetNext4.3 Parallel and Distributed Computing

Last updated 1 year ago

Was this helpful?